Ex Suppose a cylindrical water tank of height 1 m with cross-sectional area 1 m² is being filled at a rate of 1 l/s with water. Water leaks out a small hole in the bottom. When the tank is completely full, the leak rate is 2 l/s. Assume the draining tank obeys Torricelli's Law.

a) Can the tank ever empty?
b) Can the tank ever overflow?
c) Is there a stable, equilibrium water depth?

d) Write the DE for h(t), the water depth.
Derive the general equation for \(h(t) \) in terms of the tank area \(A \), maximum depth \(D \), inflow rate \(Q_i \), outflow rate at maximum depth \(Q_o \). Scale the resulting equation to be as simple as possible.
5 Minute Mathematics Break.

A computational method is used to determine a drag coefficient for flow over a proposed aircraft wing design. Computations are first done on a design for which the drag is known exactly. The following errors are seen as the grid spacing h is refined:

<table>
<thead>
<tr>
<th>h</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.04002</td>
</tr>
<tr>
<td>0.05</td>
<td>0.00881</td>
</tr>
<tr>
<td>0.025</td>
<td>0.00201</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.00049</td>
</tr>
</tbody>
</table>

What is the order of convergence of the method?
Ex. Approximate the solution of

\[y' = \sqrt{y^2 + t^2} \]

with \(y(0) = 1 \) at \(T = 0.2 \) using 2 steps of FE with step size \(h = 0.1 \).

Ex. Consider the DE system

\[
\begin{align*}
\frac{dx}{dt} &= x + y + t \\
\frac{dy}{dt} &= x - y
\end{align*}
\]

with initial data \(x(0) = 1, \ y(0) = 0 \).

Use Euler's method with 2 steps of size \(h = 0.1 \) to approximate the solution at \(t = 0.2 \) (both \(x(0.2) \) and \(y(0.2) \))
5 Minute Mathematics Break.

Consider the following DE for \(x(t) \):

\[
\dot{x} = ax - bx^2 + cx^3. \quad (a, b, c \text{ given positive})
\]

Scale \(x \) and \(t \) to make the first two terms on the RHS of the equation as simple as possible.

You should have a single parameter left in the equation, a combination of \(a, b, \) and \(c \).
5 Minute Mathematics Break.

Convert the following 2nd order DE for \(x(t) \) to a first order system:

\[\ddot{x} + t^2 \dot{x} + x^2 = 0. \]

If you have time, apply FE stepping to this problem with

\[x(0) = 1, \quad \dot{x}(0) = 1 \]

Do 2 steps of size \(h = 0.1 \).
Ex. Consider the problem for $y(t)$:
\[\frac{dy}{dt} = t + y^2 \quad \text{with} \quad y(0) = 1. \]
Approximate $y(0.1)$ using one step of BE time stepping.

Ex. Use one step of Improved Euler to approximate $y(0.2)$ where $y(t)$ solves
\[y' = 3 - t + y \]
with $y(0) = 1$.